

Role of Bioactive Compounds and Artificial Intelligence Tools in Advancing Modern Horticulture

Abhijit Debnath^{*1}, Abhik Sarkar², Moaakum Pongen³, and H. Lembisana Devi⁴,

¹Department of Horticulture and Post-Harvest Technology, PalliSiksha Bhavana, Visva-Bharati, Sriniketan, West Bengal, India

²Department of Community Health Nursing, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, 768019, India

³Department of Animal Science, ICAR KVK, Wokha, Nagaland 797111, India

⁴Department of Horticulture, ICAR-KVK Tamenglong, ICAR RC for NEHR Manipur Centre, Lamphelpat, Imphal, Manipur 795001, India

10 August 2020: Received | 11 September 2020: Revised | 14 October 2020: Accepted | 15 November 2020: Available Online

*Corresponding Author: Abhijit Debnath | Email Address: abhijitdebnathhorticulture@gmail.com

Citation: Abhijit Debnath, Abhik Sarkar, Moaakum Pongen and H. Lembisana Devi (2020). Role of Bioactive Compounds and Artificial Intelligence Tools in Advancing Modern Horticulture. *Plant Science Review*.

DOI: <https://doi.org/10.51470/PSR.2020.01.02.01>

Abstract

Modern horticulture is undergoing a profound transformation driven by the integration of bioactive compounds and artificial intelligence (AI) technologies. Bioactive compounds—such as plant growth regulators, secondary metabolites, biostimulants, and natural elicitors—play a crucial role in enhancing crop productivity, quality, stress tolerance, and sustainability. Concurrently, artificial intelligence tools, including machine learning, deep learning, computer vision, and decision-support systems, are revolutionizing crop management, disease detection, yield prediction, and precision farming. This review critically examines the synergistic role of bioactive compounds and AI-based tools in advancing modern horticulture. We discuss the types, mechanisms, and applications of bioactive compounds in horticultural crops, followed by an overview of AI technologies and their implementation across horticultural production systems. The integration of AI with bioactive compound management is highlighted as a promising pathway toward data-driven, sustainable, and climate-resilient horticulture. Challenges, ethical considerations, and future prospects are also addressed to guide researchers, practitioners, and policymakers.

Keywords: Bioactive compounds, Artificial intelligence, Precision horticulture, Plant biostimulants, Machine learning, Sustainable agriculture.

1. Introduction

Horticulture plays a vital role in global food security, nutrition, human health, and economic development, particularly through the production of fruits, vegetables, ornamental plants, and medicinal crops. As consumer demand for high-quality, safe, and nutritionally rich horticultural produce continues to rise, the sector faces increasing challenges related to climate change, resource scarcity, environmental degradation, and labor shortages [1]. Conventional horticultural practices that rely heavily on synthetic fertilizers and pesticides are becoming less sustainable due to their adverse impacts on ecosystems, soil health, biodiversity, and human well-being. Consequently, there is a growing need for innovative, environmentally responsible approaches that enhance productivity while reducing ecological footprints, bioactive compounds have emerged as promising tools for advancing sustainable

horticulture. These compounds, which include plant growth regulators, biostimulants, secondary metabolites, and elicitors, exert significant influence on plant physiological and biochemical processes even at low concentrations [2]. Bioactive compounds enhance nutrient use efficiency, stimulate growth and development, improve yield and quality, and strengthen plant tolerance to abiotic and biotic stresses. Unlike traditional agrochemicals, many bioactive compounds act by modulating endogenous signaling pathways and metabolic functions, making them particularly valuable for improving crop resilience under changing environmental conditions.

Parallel to advancements in plant-based inputs, digital technologies—particularly artificial intelligence (AI)—are transforming modern agricultural systems. Artificial intelligence encompasses a range of computational techniques, including machine learning, deep learning,

computer vision, and data-driven decision-making systems, that enable the analysis of complex and large-scale datasets. In horticulture, AI tools facilitate precision farming by improving crop monitoring, disease detection, yield prediction, irrigation management, and post-harvest handling. These technologies allow growers to make timely, accurate, and site-specific decisions, reducing waste and optimizing the use of inputs. The integration of bioactive compounds with artificial intelligence tools represents a powerful and emerging paradigm in modern horticulture. AI-driven systems can identify crop stress at early stages, predict plant responses, and guide the precise application of bioactive compounds tailored to specific crop needs and environmental conditions [3]. This synergy enhances the effectiveness of bioactive substances while minimizing overuse, thereby supporting sustainability goals. Moreover, AI-assisted data analytics accelerate the development and optimization of bioactive formulations by uncovering patterns in plant responses across diverse environments. A holistic understanding of how these two domains intersect is essential for advancing climate-resilient, resource-efficient, and high-value horticultural systems [4]. Therefore, this review aims to critically examine the role of bioactive compounds in horticulture, explore important artificial intelligence tools and their applications, and highlight the synergistic integration of these approaches in advancing modern horticultural practices. The review also discusses future prospects, challenges, and research directions for the sustainable transformation of horticulture through bioactive compounds and AI-driven technologies.

2. Bioactive Compounds in Modern Horticulture

Bioactive compounds are increasingly recognized as essential components of sustainable horticultural production systems due to their ability to regulate plant physiological and biochemical processes at low concentrations. These compounds influence growth, development, and stress responses by interacting with plant hormonal pathways, metabolic networks, and gene expression mechanisms. Unlike conventional fertilizers that primarily supply nutrients, bioactive compounds function as regulators and enhancers of plant performance, enabling crops to achieve higher productivity and quality with reduced reliance on synthetic agrochemicals. Their use aligns with global efforts to promote environmentally responsible and climate-resilient agricultural practices. Among bioactive compounds, plant growth regulators play a central role in shaping horticultural crop development [5]. Auxins, cytokinins, gibberellins, abscisic acid, ethylene, and brassinosteroids collectively regulate critical processes such as cell division, elongation, flowering, fruit set, ripening, and senescence. The strategic application of these regulators has been widely adopted to improve crop uniformity, increase yield, and enhance marketable quality in fruits, vegetables, and ornamental plants.

By fine-tuning endogenous hormone balance, plant growth regulators help optimize physiological responses throughout different growth stages.

Secondary metabolites represent another important class of bioactive compounds with significant implications for horticulture. These naturally occurring compounds, including phenolics, flavonoids, alkaloids, and terpenoids, contribute to plant defense mechanisms, stress tolerance, and sensory attributes such as color, flavor, and aroma. In horticultural crops, secondary metabolites enhance resistance to pests and diseases while simultaneously improving nutritional and functional properties that are highly valued by consumers [6]. Their antioxidant activity also plays a crucial role in protecting plant tissues from oxidative damage, particularly under stress conditions.

Plant biostimulants have gained considerable attention as sustainable inputs that improve plant performance by stimulating natural physiological processes. Derived from sources such as seaweed extracts, humic substances, amino acids, and beneficial microorganisms, biostimulants enhance nutrient uptake efficiency, root development, and tolerance to abiotic stresses such as drought, salinity, and temperature extremes. Their application not only improves crop vigor and yield but also contributes to improved soil health and microbial activity, making them particularly suitable for integrated and organic horticultural systems. Elicitors further strengthen plant defense by activating innate immune responses without directly targeting pathogens. Compounds such as salicylic acid, jasmonic acid, chitosan, and microbial-derived molecules trigger systemic resistance, enabling plants to respond more effectively to biotic stress [7]. The use of elicitors reduces dependence on chemical pesticides and supports environmentally friendly pest and disease management strategies. Collectively, bioactive compounds play a multifaceted role in enhancing horticultural productivity, quality, and resilience while supporting sustainable production systems.

3. Artificial Intelligence Tools in Horticultural Systems

Artificial intelligence has emerged as a transformative force in modern horticulture by enabling data-driven decision-making and precision management of crops. AI technologies are capable of processing large and complex datasets generated from sensors, imaging platforms, weather stations, and farm management systems. Through pattern recognition, predictive modeling, and automated decision support, AI tools help optimize horticultural practices while reducing resource use and production risks [8]. These technologies are particularly valuable in high-value horticultural systems where precision and efficiency are critical. Machine learning algorithms have been widely applied to model crop growth, predict yields, and assess environmental impacts on plant performance. The learning from historical and real-time data, machine learning systems can forecast disease outbreaks, nutrient deficiencies, and stress conditions before visible symptoms appear.

Deep learning models, especially convolutional neural networks, have demonstrated exceptional accuracy in image-based applications such as plant disease detection, pest identification, fruit counting, and maturity assessment. These capabilities enable rapid and non-destructive monitoring of crops across large production areas [9]. Computer vision technologies further enhance horticultural management by enabling automated analysis of visual plant traits. Cameras mounted on drones, robots, or stationary platforms capture high-resolution images that are analyzed to evaluate plant health, canopy structure, fruit quality, and yield potential. In post-harvest operations, computer vision systems are widely used for sorting and grading fruits and vegetables based on size, color, shape, and surface defects, ensuring consistent quality and reducing post-harvest losses.

AI-driven decision support systems integrate agronomic, climatic, and operational data to provide real-time recommendations for irrigation scheduling, nutrient management, and pest control. These systems assist growers in applying inputs at optimal times and locations, improving resource use efficiency and minimizing environmental impacts. In protected cultivation systems such as greenhouses and vertical farms, AI algorithms dynamically regulate temperature, humidity, light, and carbon dioxide levels to create optimal growing conditions, resulting in higher yields and improved crop quality. Robotics and automation represent another significant application of artificial intelligence in horticulture. AI-powered robots are increasingly used for planting, pruning, harvesting, and targeted spraying, particularly in horticultural operations. These systems reduce labor dependency, improve operational precision, and enable continuous monitoring and intervention. As AI technologies continue to evolve, their integration into horticultural systems is expected to play a central role in enhancing productivity, sustainability, and resilience in the face of global agricultural challenges.

4. Synergistic Integration of Bioactive Compounds and Artificial Intelligence

The integration of bioactive compounds with artificial intelligence tools represents a significant advancement in modern horticultural practices, enabling a shift from generalized input application to precision-based crop management. Artificial intelligence systems can analyze real-time data related to plant growth, environmental conditions, and stress indicators, allowing for the targeted and timely application of bioactive compounds [10]. This precision approach enhances the efficacy of bioactive inputs while minimizing waste, environmental contamination, and production costs. By aligning plant physiological needs with data-driven decision-making, the integration of these technologies supports more efficient and sustainable horticultural systems.

AI-based monitoring tools facilitate early detection of abiotic and biotic stresses through the analysis of plant images, spectral data, and sensor outputs. Once stress symptoms are identified, bioactive compounds such as biostimulants and elicitors can be applied strategically to mitigate adverse effects and strengthen plant defense mechanisms. This proactive management approach improves crop resilience, reduces reliance on chemical pesticides, and enhances overall plant health. The combination of early stress diagnosis and targeted intervention is particularly valuable in high-value horticultural crops, where yield losses can have significant economic consequences. Artificial intelligence algorithms dynamically regulate microclimatic factors such as temperature, humidity, light intensity, and carbon dioxide levels while coordinating the application of growth regulators and biostimulants. This synchronized management creates optimal growth conditions, leading to increased productivity, uniformity, and product quality. AI-driven systems enable continuous optimization by learning from plant responses over time, further enhancing system efficiency [11]. Artificial intelligence also plays a crucial role in accelerating the development and optimization of bioactive compound formulations. Analyzing large datasets generated from field trials and laboratory experiments, AI tools can identify patterns in plant responses and predict the effectiveness of specific compounds or combinations. This data-driven approach reduces the time and cost associated with product development and supports the creation of customized bioactive solutions tailored to specific crops, environments, and production systems.

5. Challenges, Limitations, and Ethical Considerations

The widespread adoption of bioactive compounds and artificial intelligence tools in horticulture faces several challenges. One major limitation is the variability in plant responses to bioactive compounds under different environmental conditions, crop species, and application methods. Inconsistent results can reduce grower confidence and highlight the need for standardized application protocols, rigorous field validation, and region-specific recommendations. Additionally, the complex modes of action of many bioactive compounds are not yet fully understood, limiting their optimized use [12]. The implementation of artificial intelligence technologies in horticulture also presents technical and economic challenges. High initial investment costs, limited access to digital infrastructure, and the need for technical expertise can restrict adoption, particularly among smallholder and resource-limited growers. Data quality and availability are critical for AI performance, and inaccurate or incomplete datasets can lead to unreliable recommendations, interoperability issues between different digital platforms and hardware systems can hinder seamless integration. Ethical considerations related to data ownership, privacy, and transparency must also be addressed as AI-driven systems become more prevalent.

The collection and use of farm data raise concerns about who owns the data, how it is used, and whether growers have adequate control over their information. Additionally, reliance on automated decision-making systems may reduce human oversight, emphasizing the need for clear accountability frameworks and ethical guidelines to ensure responsible use of AI in horticulture, while bioactive compounds are generally considered safer than conventional agrochemicals, their large-scale production and application must still be evaluated for sustainability and long-term ecological impacts. Regulatory frameworks governing the approval and use of bioactive products vary across regions, creating uncertainty and potential barriers to commercialization. Addressing these challenges requires coordinated efforts among researchers, industry stakeholders, policymakers, and growers to establish clear standards, guidelines, and best practices.

6. Future Perspectives and Research Directions

The future of modern horticulture lies in the continued integration of bioactive compounds and artificial intelligence technologies to create resilient, efficient, and sustainable production systems. Advances in molecular biology, omics technologies, and plant phenotyping are expected to enhance understanding of the mechanisms underlying bioactive compound activity, enabling more precise and effective applications. Coupled with AI-driven analytics, these insights will support the development of next-generation bioactive products tailored to specific crops and environmental conditions. Artificial intelligence technologies are expected to become more accessible, affordable, and user-friendly, facilitating broader adoption across diverse horticultural systems. The integration of AI with Internet of Things (IoT) devices, remote sensing platforms, and autonomous machinery will further enhance real-time monitoring and decision-making capabilities. These advancements will enable predictive and adaptive management strategies that respond dynamically to changing environmental and crop conditions. Long-term field studies are needed to evaluate the combined impacts of bioactive compounds and AI tools on productivity, environmental sustainability, and economic viability, interdisciplinary collaboration among plant scientists, data scientists, engineers, and social scientists will be essential to address technical, ethical, and socioeconomic challenges, the synergistic application of bioactive compounds and artificial intelligence represents a transformative approach to advancing modern horticulture. An enhancing plant performance, optimizing resource use, and supporting sustainable practices, this integrated strategy has the potential to meet the growing global demand for high-quality horticultural produce while safeguarding environmental and human health.

7. Conclusion

Bioactive compounds and artificial intelligence tools represent complementary pillars of modern horticulture. Bioactive compounds enhance plant health, productivity, and quality through natural physiological pathways, while AI tools enable precise, data-driven decision-making across the horticultural value chain. Their integration offers a powerful approach to achieving sustainable, resilient, and high-performing horticultural systems, ethical deployment, and inclusive innovation will be key to realizing their full potential.

References

1. Pereira, G. C. (2019). Application of biotechnology in producing plant bio-active compounds. In *Natural Bioactive Compounds: Volume 3: Biotechnology, Bioengineering, and Molecular Approaches* (pp. 59-78). Singapore: Springer Singapore.
2. Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., & Ferrante, A. (2019). Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. *Frontiers in plant science*, 10, 1212.
3. Goicoechea, N., & Antolín, M. C. (2017). Increased nutritional value in food crops. *Microbial biotechnology*, 10(5), 1004-1007.
4. Amadio, C. M., & Colelli, G. (2019). VI International Symposium on Applications of Modelling as an Innovative Technology in the Horticultural Supply Chain Model-IT 2019.
5. Jeschke, P. (2004). The unique role of fluorine in the design of active ingredients for modern crop protection. *ChemBioChem*, 5(5), 570-589.
6. Manganaris, G. A., Goulas, V., Mellidou, I., & Drogoudi, P. (2018). Antioxidant phytochemicals in fresh produce: exploitation of genotype variation and advancements in analytical protocols. *Frontiers in Chemistry*, 5, 95.
7. D'Agostino, N., & Tripodi, P. (2017). NGS-based genotyping, high-throughput phenotyping and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops. *Diversity*, 9(3), 38.
8. Vurro, M., Miguel-Rojas, C., & Pérez-de-Luque, A. (2019). Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. *Pest management science*, 75(9), 2403-2412.
9. Morone, P., Koutinas, A., Gathergood, N., Arshadi, M., & Matharu, A. (2019). Food waste: Challenges and opportunities for enhancing the emerging bio-economy. *Journal of cleaner production*, 221, 10-16.
10. Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. *Journal of the Science of Food and Agriculture*, 96(13), 4303-4309.
11. Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. *Journal of Food Processing and Preservation*, 43(12), e14280.